8 research outputs found

    Nonholonomic Closed-loop Velocity Control of a Soft-tethered Magnetic Capsule Endoscope

    Get PDF
    In this paper, we demonstrate velocity-level closedloop control of a tethered magnetic capsule endoscope that is actuated via serial manipulator with a permanent magnet at its end-effector. Closed-loop control (2 degrees-of-freedom in position, and 2 in orientation) is made possible with the use of a real-time magnetic localization algorithm that utilizes the actuating magnetic field and thus does not require additional hardware. Velocity control is implemented to create smooth motion that is clinically necessary for colorectal cancer diagnostics. Our control algorithm generates a spline that passes through a set of input points that roughly defines the shape of the desired trajectory. The velocity controller acts in the tangential direction to the path, while a secondary position controller enforces a nonholonomic constraint on capsule motion. A soft nonholonomic constraint is naturally imposed by the lumen while we enforce a strict constraint for both more accurate estimation of tether disturbance and hypothesized intuitiveness for a clinician’s teleoperation. An integrating disturbance force estimation control term is introduced to predict the disturbance of the tether. This paper presents the theoretical formulations and experimental validation of our methodology. Results show the system’s ability to achieve a repeatable velocity step response with low steady-state error as well as ability of the tethered capsule to maneuver around a bend

    Autonomous Retroflexion of a Magnetic Flexible Endoscope

    Get PDF
    Retroflexion during colonoscopy is typically only practiced in the wider proximal and distal ends of the large intestine owing to the stiff nature of the colonoscope. This inability to examine the proximal side of the majority of colon folds contributes to today's suboptimal colorectal cancer detection rates. We have developed an algorithm for autonomous retroflexion of a flexible endoscope that is actuated magnetically from the tip. The magnetic wrench applied on the tip of the endoscope is optimized in real time with data from pose detection to compute motions of the actuating magnet. This is the first example of a completely autonomous maneuver by a magnetic endoscope for exploration of the gastrointestinal tract. The proposed approach was validated in plastic tubes of various diameters with a success rate of 98.8% for separation distances up to 50 mm. Additionally, a set of trials was conducted in an excised porcine colon observing a success rate of 100% with a mean time of 19.7 s. In terms of clinical safety, the maximum stress that is applied on the colon wall with our methodology is an order of magnitude below what would damage tissue

    Systematic Design of edical Capsule Robots

    Get PDF
    Medical capsule robots that navigate inside the body as diagnostic and interventional tools are an emerging and challenging research area within medical CPSs. These robots must provide locomotion, sensing, actuation, and communication within severe size, power, and computational constraints. This paper presents the first effort for an open architecture, platform design, software infrastructure, and a supporting modular design environment for medical capsule robots to further this research area

    Enhanced real-time pose estimation for closed-loop robotic manipulation of magnetically actuated capsule endoscopes

    Get PDF
    Pose estimation methods for robotically guided magnetic actuation of capsule endoscopes have recently enabled trajectory following and automation of repetitive endoscopic maneuvers. However, these methods face significant challenges in their path to clinical adoption including the presence of regions of magnetic field singularity, where the accuracy of the system degrades, and the need for accurate initialization of the capsule's pose. In particular, the singularity problem exists for any pose estimation method that utilizes a single source of magnetic field if the method does not rely on the motion of the magnet to obtain multiple measurements from different vantage points. We analyze the workspace of such pose estimation methods with the use of the point-dipole magnetic field model and show that singular regions exist in areas where the capsule is nominally located during magnetic actuation. Since the dipole model can approximate most magnetic field sources, the problem discussed herein pertains to a wider set of pose estimation techniques. We then propose a novel hybrid approach employing static and time-varying magnetic field sources and show that this system has no regions of singularity. The proposed system was experimentally validated for accuracy, workspace size, update rate and performance in regions of magnetic singularity. The system performed as well or better than prior pose estimation methods without requiring accurate initialization and was robust to magnetic singularity. Experimental demonstration of closed-loop control of a tethered magnetic device utilizing the developed pose estimation technique is provided to ascertain its suitability for robotically guided capsule endoscopy. Hence, advances in closed-loop control and intelligent automation of magnetically actuated capsule endoscopes can be further pursued toward clinical realization by employing this pose estimation system

    Sensitivity Ellipsoids for Force Control of Magnetic Robots With Localization Uncertainty

    Get PDF
    The navigation of magnetic medical robots typically relies on localizing an actuated, intracorporeal, ferromagnetic body and back-computing a necessary field and gradient that would result in a desired wrench on the device. Uncertainty in this localization degrades the precision of force transmission. Reducing applied force uncertainty may enhance tasks such as in vivo navigation of miniature robots, actuation of magnetically guided catheters, tissue palpation, as well as simply ensuring a bound on forces applied on sensitive tissue. In this paper, we analyze the effects of localization noise on force uncertainty by using sensitivity ellipsoids of the magnetic force Jacobian and introduce an algorithm for uncertainty reduction. We validate the algorithm in both a simulation study and in a physical experiment. In simulation, we observe reductions in estimated force uncertainty by factors of up to 2.8 and 3.1 when using one and two actuating magnets, respectively. On a physical platform, we demonstrate a force uncertainty reduction by a factor of up to 2.5 as measured using an external sensor. Being the first consideration of force uncertainty resulting from noisy localization, this paper provides a strategy for investigators to minimize uncertainty in magnetic force transmission
    corecore